Importance of Deep Permafrost Soil Characterization for Accurate Assessment of Thaw Subsidence Impacts on the Design and Integrity of Arctic Wells

Abstract

Oil and gas producers have shown renewed interest in developing reservoirslocated both onshore and offshore within the Arctic regions of Alaska, Canadaand Russia. In many cases, the hydrocarbon reservoirs are known to be overlainby a massive permafrost interval that extends over depths of up to 700 m belowthe surface active layer. These conditions create unique design and operationalchallenges for production and injection wells from the perspective of ensuringthat well integrity will not be compromised by the inevitable thaw subsidenceof the permafrost soil layers.

The permafrost soil layers surrounding arctic wells will thaw gradually withtime due to wellbore heat loss. As the thaw zone advances radially outward fromeach well, the ice-to-water phase change within the pore space of thefrozen/partially frozen sediments will lead to changes in the permafrost soilproperties and to the loading conditions within the thaw column region. Thesechanges will result in soil deformations (including both vertical settlements(subsidence) and horizontal displacements) which can, in turn, inducesignificant well casing strains that need to be considered in selecting thewell design and layout. The magnitude of the soil deformations that occurthroughout the permafrost interval are highly dependent on the depositionhistory, insitu temperature and the physical and mechanical properties of theindividual soil layers. Therefore, in order to accurately predict the soildeformations and resultant localized casing strain levels, it is essential toobtain reliable data to properly characterize the lithology (soil types) withinthe permafrost interval, as well as the frozen state and the relevantmechanical and thermal properties (both frozen and thawed) of individual soillayers. This paper describes the various information and geotechnical test datathat has been used to establish the thaw and deformation response of differentpermafrost soils at a number of arctic locations for the purpose of evaluatingthe effects of thaw subsidence loading on wells. Overall, the paper serves tohighlight the importance of collecting the appropriate geotechnical data toallow thaw subsidence-induced ground deformations and associated casing loadingconditions to be properly considered at the well/project design stage.

 

Author: Matthews, C. M., & Zhang, G.

Publisher: OTC Arctic Technology Conference, 3-5 December, Houston, Texas, USA

Year: 2012

Purchase URL: Purchase this paper